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A new approach which allows one to investigate combustion in flows for rather broad classes of multi-stage 

chemical reactions is employed. Combustion in flows for a single-state chemical reaction has been studied in 

a number of papers [l, 21. There the process was described by a scalar parabolic equation and could be 

investigated by fairly simple mathematical techniques. When one considers combustion with more- 

complicated kinetics the methods that were used are not in general applicable. 

1. STATEMENT OF THE PROBLEM 

CONSIDER the parabolic system of equations 

au azu au 
--a--&c--y(U) 
at 

(1.1) 

u=(u*, . . ..un). F(u)=(F,(u),....F,(u)), a=aE, a>0 

on the semi-axisn>O for ts0. Here F(u) is a sufficiently smooth vector function, a is a scalar matrix, E is the 
unit matrix and c is a positive constant (the flow velocity). The boundary conditions are specified in the form 

where U’ is some constant vector. 

(((0, t) = ZP. u( +m. t)=O, (1.2) 

It is assumed that the function F(u) satisfies the following conditions: 
1. F(0) = 0 and u = 0 is an asymptotically stable stationary point of the kinetic system 

aU/at=--F(u) (1.3) 

2. For ~20 (a coordinatewise inequality) there exists a convex domain II such that u = u” belongs to this 
domain, u = 0 lies on its boundary, the functions F,(U) (i = 1, , n) are all positive inside this domain, and 
the domain II is positively invariant with respect to system (1.3). The latter means that if the point u0 belongs to 
the closure of the domain II, then the solution u(t) of Eq. (1.3) with initial condition u(O) = U” also belongs to 
n. 

3. The inequalities 

are satisfied in the domain n. 

b’Ff/aujbO, i, j=l,. _. . n. i+j (1.4) 

The first two conditions are typical for the equations of chemical kinetics with irreversible reactions [3, 4] for 
appropriate changes of variables. They mean that in the balance-polyhedron II a stable equilibrium exists for 
the kinetic system, the rates of the reactions I;;(U) being positive for positive concentrations, and that the 
concentrations of the reactants cannot become negative during the reaction. 

Inequalities (1.4) are satisfied by wide classes of reactions [3-6], which is important later, because in this case 
comparison theorems hold for Eq. (1.1): if f, (x) <f*(x) for x 30 and fi(0) = u’, i = 1, 2, then the solutions 
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uj(x, t) of Eq. (1.4) with initial conditions Ui(X, 0) =fi(n) satisfy the inequalities ul(x, t)suz(x, t) forxao and 
t30. 

2. EXISTENCE AND STABILITY OF STEADY-STATE SOLUTIONS 

We shall show that problem (l.l), (1.2) has a steady-state solution. To do this we set the initial condition in 
the form 

&(5, Of =G. SXl (2.1) 

and consider problem (1.1) (1.2) (2.1). Its solution u(x,#) is contained in B for all ~30, ts0 [7] and by 
condition (1.3) does not increase monotonically in t for all fixed X. Hence as t-++m, U(X, t) tends to some 
function w(x). One can verify that this function satisfies Eq. (1.1) and boundary conditions (1.2). 

Furthermore, it is obvious that w(x) belongs to II and does not increase with x. The latter follows from the 
fact that if for some x03 0 and i we have We’ > 0, then 

Wi”(.Q) 3CCt-‘Wf’(Q) >>o 

and the function wi will increase without limit as x+ *, when, by assumption, it cannot exceed the value u’. 
Thus the limit of w(n) as x--t m exists and is a stationary point of system (1.3). 

We shall denote this stationary point by w+ and show that w + = 0. We will assume the contrary. Then 
0~ w+ G u” and w+ f: u”. Because of the positive invariance of the domain II and inequalities (1.4), the domain 
II+ consisting of points from the set II satisfying the condition u >w+ is positively invariant relative to Eq. 
(1.3). On the other hand, the interval rue joining the points u = 0 and u = ue, lies in II for O<TG 1 and along 
this interval F(u)>O. Hence the solution of Eq. (1.3) with initial condition u(0) = QUO, where TO is such that 
rOuo lies on the boundary of the set II*, cannot remain inside this set, which contradicts its positive invariance. 
Thus we have shown that w(x)+0 as n-+ a. 

The concept of functional undecomposibility of a matrix will be necessary later. The continuous matrix B(x) 
is called functionally undecomposible if the matrix formed by the norms of the elements of the matrix B(x) in 
the space C is undecomposible. We note that from the inequality w”(x)~O for XSO and for functional 
undecom~sibility of the matrix F’[w(x)] for xk0 it followst that w’(x) <O for x>O. The inequality w’(O) ~0 
follows from w”(O)SO and F(u”)>O. 

The function W’(X) is therefore negative for x b 0 and tends to zero as x-+ 00. From this and the assumption 
of functional undecomposibility of the matrix F’[w(x)] it follows that the equation 

1111” -crc’-F’(w(r))rr~-hrr 

u(0) =o. rr(C=)=f/ (2.2) 

has no non-zero solutions for ReX 20 [8]. This means that the steady-state solution w(x) of problem (l.l), 
(1.2) is stable with respect to small pe~urbations in the space of continuous functions with conditions (2.2), i.e. 
there exists an E > 0 such that the inequality 

sup If(+)-W(Z) IGE 
t*o 

implies convergence: 

sup ]rr(t.l)-w(z) I-0 as 1-+ m 
X)0 

where U(X, t) is the solution of problem (l.l), (1.2) with initial condition 

rr(5,tJ)=f(r). (f(O)-IP. f( +,a)=+) (2.3) 

We shall now show that the solution w(x) is stable not just with respect to small perturbations, but also 
globally. We first assume thatf{x) does not increase when x 9 0. It follows from the comparison theorem that it 
is sufficient to consider the casesf(x) zs w(x) for x & 0 andf(x) 6 W(X) for x 3 0. We shall only consider the first 
case here because they are similar. 

TVOL’PERT A. I. and VOL’PERT V. A., Travelling waves described by monotonic parabolic systems. Chernogolovka 
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Together with problem (l.l), (1.2) we shall consider n initial boundary-value problems for Eq. (1.1) in the 
domainxarh(i= 1,2,. . ., n) where h is some positive number, with boundary conditions 

II (ih, t) = IJO. u(+-,t)=ll 

It is obvious that wi(~) - W(X - ih) are steady-state solutions of these problems. 
We choose h and n so that 

SUP (Wi(I)-W4_I(X)I<e/2 (2.4) 
s>ih 

sup l(x) -w, (2) 1 <F (2.5) 
x>nb 

We putfi(x) = max[f(x, wi(X)] forxsih. Then, clearly,fi_i(x)<fi(x) forn>rh. We denote by u(x, t) the 
solution of the ith problem with initial condition ui(n, 0) = fi(x). Because the function Ui(X, t) is monotonic in x 
for every fixed t in its domain of definition, then Ui_i(ih, t)<ui(rh, t) and by the comparison theorem 
ui_i(x, t)G~~(x, t) for xaih. 

We shall show by induction that for each i we have the limit 

SUP lUi(Z. t)-Wi(2) I+0 as /-cm (2.4) 
x>ib 

This is true for i = n because of (2.5) and the stability of the solution with respect to small perturbations. 
Suppose condition (2.6) is valid for some i = k. Because 

Wf,-t(Z)<l1k-!(2, t)duk(Z. t)<wk(t)+&/2, rakh 

is valid for sufficiently large t, it follows from (2.4) that the solution u~-~ (x, t) lies in an s-neighbourhood of the 
steady-state solution wk_i (x), and the convergence of (2.6) for i = k - 1 follows from the stability of w&i with 
respect to small perturbations. 

We obtain the required convergence of the original function problem from the i = 0 case of (2.6). 
If we no longer assume that f(n) is a monotonic function, then when the conditions 

09j(z)<u” for z>O, f(s)+0 as Z++W (2.7) 

are satisfied, the convergence of the solution of problem (l.l), (1.2), (2.3) to the steady-state solution w(x) will 
follow from the comparison theorems if the initial function can be estimated from above and below by 
monotonic functions whose convergence has already been proved. 

We also note that it follows from the monotonicity of the steady-state solutions and their global stability that 
a steady-state solution is unique. 

Thus we have proved the following fundamental theorem. 

Theorem. With the above assumptions about the function F(u) (conditions l-3 of Sec. 1) there exists a 
steady-state solution w(x) of problem (1. l), (1.2). If the matrix F’[w(x)] is functionally undecomposible, then 
this solution is unique in the class of bounded functions, has a negative derivative w’(x) for x SO and is stable 
both with respect to small perturbations and globally (when conditions (2.7) are satisfied). Here stability is to 
be understood in the uniform norm with respect to perturbations that vanish at x = 0 and x = +m. 

3. PARAMETER DEPENDENCE OF THE SOLUTION 

We will now consider a more-general statement of the problem, which is parameter dependent, and obtain 
estimates for changes in the solution due to changes in the parameters. Suppose we are given an initial 

boundary-value problem on the half-strip a= {(x, y ) 1 x 2 0, - 1 sy < l}: 

au a+ aau au 
-=a -+- 
at ( as au2 ) --c --&- +F(u, 2, id (3.1) 

u 1 (X. y)tsm=(Pk sr), (3.2) 

u(z, Y, O)=f(% ar) (3.3) 
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As above, we shall consider solutions that tend to zero as x+ 01 and admit estimates 1 u(x, y, t) 1 S uo. Here 
we do not assume that the source F(x) and velocity c satisfy the conditions formulated in Sec. 1. For simplicity, 
we will restrict ourselves to a scalar equation, although all the constructions can be easily carried over to 
systems of equations [satisfying conditions (1.4)], and also to a multi-dimensional situation and a domain with a 
different geometry. The dependence of the source F on the spatial variables can reflect an inhomogeneous 
medium or the presence of external influences. 

We shall suppose that near u = 0 the function F can be represented in the form 

P(ut 2, Yl =-pu+g(z, Y)+hotu, 2, II) 

Jho(u,z,Y)]G8 for ~20, ]Yl’i, ]u]~uo 

where p is some positive number and the function ho(u, x, y) contains quadratic terms. 
We consider problem (3.1-(3.3) for g(x,y) = gi(X,y) (i = 1, 2) and denote its solutions by ui(x,y, t) 

respectively. We put z = u2 - ui . Then z is obviously a solution of the problem 

;=a(;+$) -c; - pz+g,(z, II)Y3l@, I)+u, II* t) (3.4) 

ZJ(X,“)EdQ=O, zlt=o=O 
(h(z, Y, t)=ho(uz(z, t), 5, ~)-ho(u,(~, t), 5, Y)) 

(3.5) 

It is clear from the maximum principle that we have the estimate 

(Iz(z, y, t) 1 <(m+%)/p, 220. 1 Y 1 G1. ta (3.6) 

where m is a positive number for which 

Ig&, y)-b3k Y) I <m, SW lyl"l 

In particular, for 6 = 0 (the linear case) (3.6) gives an estimate for changes in the solution depending on 
changes in the inhomogeneity g(x, y ). 

If the boundary conditions in (3.5) are inhomogeneous, 

I+. “)EBP=r(5,8) 

and 1 r (x, y) 1 s ml, then again using the maximum principle and inequality (3.6) we obtain 

Iz(z, Y, 0 1 dmax [(m+Z%/p, ml 

Z,O, Jy(Gl, tao 
(3.7) 

We also obtain estimates of solutions under changes of domain. Alongside problem (3.4), (3.5) we consider a 
similar problem in the domain R o, contained in 0, with boundary conditions 

a 1 (X. tl)EdO=O 

Its solution is denoted by zo(x, y, t). We will estimate the quantity /z-z01 in Ro. To do this we cite yet 
another estimate for the solution of problem (3.4), (3.5): 

lz(~, Y, t) I 4(1-y2). b= (m+26)/(2a) 

We write 

s(z. Y, tl=z(G Y, q I,". lj)Ewn 

Then z(x, y, t) is a solution of Eq. (3.4) in the domain fla with boundary and initial conditions 

z(2. Y,~)~~*.I/,saQa=~(z,Y,~).zlI=o=O 

We obtain, as above, (assuming for simplicity that h is a specified function of x and t) that 

lt--‘0l < sup lo@, y, t) I<b(l--&) 
I>O.(I.Y)EJOC 

b=max min p(Po, P) 

where the maximum is taken over all points PO of the boundary of Ro, while the minimum is over all points P of 
the boundary of R. 
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Using the general solution of the problem of stress concentrations on the surfaces of rigid ellipsoidal 

inclusions [l], the three-dimensional problem of stresses on the surface of a completely rigid needle in an 

unbounded elastic orthotropic medium under the action of a uniform external field is solved. By a needle we 

mean an ellipsoidal inclusion, one dimension of which is large compared with the other two. Explicit 

formulas are obtained and investigated for stresses along the principal sections of the needle in the 

orthotropic medium and over the entire surface of the needle in an isotropic medium. The calculations are 

performed, apart from the singular terms (large, but finite quantities). 

1. THE STRESS u@(n) on the surface of a completely rigid ellipsoidal inhomogeneity in an arbitrary anisotropic 

medium and a uniform external field uoaB has the form 

a(n) =W) 00, F(n) =D(o)R, D(n)=cK(n) (1.1) 

Here n = (nl , n2, n3) is the limit normal vector to the ellipsoidal surface with semi-axes II, (0~ = 1,2,3) and 
F(n) is a tensor concentration coefficient. The tensor K(n) does not depend on the geometry of the 

inhomogeneity, is expressed in terms of the Fourier transform of the Green tensor of the homogeneous 
medium, and was obtained explicitly in [l] for an orthotropic medium. The tensor of elastic constants c of the 

f Prikl. Mat. Mekh. Vol. 56, No. 3, pp. 549-552, 1992. 


